SWITCHERGEART:

GEAR TO CONTROL YOUR POWER swiTcHES lLm

Example BasicDriveVF

SwitcherGear Example Project

APPLICATION NOTE

Introduction ® Build code and upload to controller.

. . _ . . .
The BasicDriveVF example project shows how to use the Switch- Operation of 3-phase induction motor using V/F control.
erGear controller to drive a three-phase induction motor with a ® Visualisation of digital variables in real-time using oscilloscope.
PWM-fed IGBT voltage source inverter. The motor control is based ® Capture of digital variables for post-processing.

on the constant voltage/frequency control principle.
Support Material
The project code resources and this manual make it easy to build PP

the power converter system with SwitcherGear. The project can be " SwitcherGear Example BasicDriveVF Application Note (this doc-

used for demonstration or as a starting point for a more advanced ument).

project. ® Project files for Code Composer Studio:

This application note covers: » SwitcherGear Example BasicDriveVF F28335.

® Description of power system and SwitcherGear controller. > SwitcherGear Example BasicDriveVF F28377D.

® Structure and operation of the control firmware. ®m SwitcherWare Library installer application, library version 0.7.0
and above.

® |nstallation of code development tools.

® Configuring the SwitcherWare Library for use with controller.

Figure 1: The equipment used for the BasicDriveVF system, clockwise from bottom-left: variable 3-phase mains supply; 3-phase

rectifier and voltage source inverter; current and voltage sensors; SwitcherGear controller with XDS100 debug probe; 4-channel
oscilloscope for real-time visualisation of digital controller variables; and, laptop running Code Composer Studio development
software. The inset shows the load induction motor.

DDO00050 SwitcherGear Example BasicDriveVF Application Note Denkinetic Pty Ltd
Revision 1 — 29 Mar 2019 contact@denki.com.au

Example BasicDriveVF

APPLICATION NOTE

IM3 %

A— ¥ | K~

V Sense —» AINOO4 I
| Sense —»| AINOO4 |

\'/(.1'C_L'Lnk. Update();
theVFCtrl.Update();
UpdateOutput_SvM();

Base

MC28377D

PWM + Trip

Power System

SwitcherGear Controller

y

Code Generation

Figure 2: Schematic diagram of the hardware for the BasicDriveVF project.

Hardware
= SwitcherGear controller:

» Denkinetic Micro MC28377D or F28335 controlCARD.
1x CONO0O02 converter interface module, or equivalent.
1x AINOO04 sensor interface modules, or equivalent.
1x AOV001 (or AOU001) analogue output module.
1x XDS110 or XDS100v2 debug probe.
1x 24 VDC power supply.

vV v.v.v Yy

= SwitcherGear accessories:

3x CBL002, 20-way ribbon cables for CON002.
1x ADP002/3 adaptor kit for SemiTeach IGBT.
3x SNI005, or equivalent, current sensors.

v v.vy Yy

1x SNVO005, or equivalent, voltage sensor.
» 4x CBLO003, 3-way cables for sensors.
® Power system:
> Variable 3-phase mains supply with voltage up to 440 VAC.

» Semikron SemiTeach IGBT power stage, or equivalent recti-
fier and inverter.

» 3-phase induction motor.
» Hookup leads with shrouded 4 mm connectors.

= 4-channel digital oscilloscope.

Microcontroller (MCU) Variants

This manual is written for the example project as implemented on a
SwitcherGear controller with the Denkinetic MC28377D microcon-
troller card, which uses the Texas Instruments TMS320F28377D
microcontroller. Unless otherwise mentioned, references to the
F28377D MCU can be replaced with other supported MCU types.
Such references may include text descriptions in this manual, or
the name of code objects.

Warning

A

This example project involves the use of hazardous
voltages. You should only attempt this project if you are
familiar with power systems and the proper safety pre-
cautions to be used with power systems.

Project Description

Hardware

The experimental hardware consists of the power system, the
SwitcherGear controller and the code generation system.

Power System

The power system is comprised of a Semikron SemiTeach IGBT
power stage, a variable voltage 3-phase mains supply and a 3-
phase induction motor.

A variable voltage 3-phase supply is used as a simple way to limit
the charging current of the DC link capacitors. The voltage should
be set to zero before turning on the supply.

SwitcherGear Controller

The SwitcherGear controller consists of a SwitcherGear base unit
with a microcontroller (MCU) module and three hardware interface
modules.

The PWM outputs of the MCU are routed internally to the converter
interface module. The signals are fed through line drivers to ensure
clean signals reach the IGBT gate drivers in the SemiTeach power
stage. The module processes the fault signals from the SemiTeach
power stage and routes them back to the MCU's trip input. It also
provides 15 V power to the gate drivers.

Separate voltage and current sensor accessories are used to safely
measure the DC link voltage and motor phase currents. The out-
puts from the sensors are connected to a sensor input module that
performs the signal conditioning. The output signals of the module
are routed internally to the high-speed ADCs in the MCU.

An analogue output module is used to convert digital controller
variables in the MCU into analogue +10 V signals that can be visu-
alised in real-time with an oscilloscope.

SwitcherGear Configuration Document

This document is used to define low-level code objects based on
the physical configuration of the controller. The document cap-
tures the configuration of the controller by listing the hardware in-
terface modules that are installed in the base connector slots, and
the MCU pins to which the modules’ signals connect.

Each MCU pin can be assigned a digital or analogue or SPI code
object. These objects can be passed to higher-level SwitcherWare
Library objects and they provide a simple way to use I/O pins in
your own application code.

Denkinetic Ptv Ltd

2/17

APPLICATION NOTE

Example BasicDriveVF

The Configuration Document includes scripting that auto-generates
code source files based on the physical configuration. They can be
found in the example project SwitcherGear Configuration
folder. The source files are included into the project and are linked
with the SwitchWare Library and the project code.

SwitcherWare Library Objects

To simplify code development, the BasicDriveVF project uses the
SwitcherWare Library from Denkinetic. This library provides code
resources that configure the MCU and implement standard func-
tionality used in power converters, including conversion of ana-
logue sensor signals, PWM generation, coordinate transformations,
etc.

The SwitcherWare Library and BasicDriveVF project are implemen-
ted in embedded C++, which provides object-oriented features
while maintaining the familiarity and computational speed of C.

Objects that are used throughout the project (global objects) are
defined in the source file AppObjects.cpp.

Sensor Inputs

The four objects Iu, Iv, Iw and Vdc_link are instances of the
AinPinScaled class that is a code wrapper for analogue input
pins. Their definition includes the number of the input pin and the
physical range of the signal being measured - this information
comes from the Configuration Document auto-generated source
files. During the application initialisation, the objects are registered
with the theF2837xD_ADC object, which handles the configuration
of the low-level MCU registers and conversion sequencer. At each
execution of the control algorithm, a call to the Update() function
of each object retrieves the result of the ADC conversion and ap-
plies the required scaling. The scaled result is available in the
outScaled member variable of the object, e.g. Iu.outScaled.

Converter Interface

The object theConverter is an instance of the HB3Sym_F2837xD
class that is a code wrapper for interfacing to 3-phase, 2-level con-
verters. It uses the EPWM peripheral hardware in the F28377D to
generate gate signals according to a variety of methods, including
space vector modulation (SVM) and sinusoidal PWM. The input
variables used to calculate duty cycle values are the demand
voltage space vector theConverter.inVdemandS3 and the meas-
ured DC link voltage theConverter.inVdclink. It also reacts to
gate driver fault signals by instantly disabling the gate signals.

In this project, the PWM is symmetric — generated by a timebase
up-down counter running at a period of 5 kHz (black triangle wave
in Figure 3). The transitions of the gate PWM signal occur when
the value of the timebase counter equals the value of the compare
register, which is a low-level register representation of duty cycle.
The compare register can be set differently for the count up and
count down sections of the timebase. This allows independent
modulation of the turn-on and turn-off gate edges and results in a
control rate that is double the PWM switching frequency, that is
10 kHz. This double rate control is configured by the use of the
constant ControlRate_Double in the call to theConverter-
Init().

———— 200 ys ————

EPWM
Timebase
Counter &
Compare

Gate PWM

ADC

Control

Figure 3: Generation of symmetric PWM with independent
control of gate PWM turn-on and turn-off. The ADC start-of-
conversion is synchronised to the PWM timebase and occurs
twice per PWM cycle.

To take advantage of the doubled PWM update rate, the control al-
gorithm must be executed at double-rate to calculate a new duty
cycle value for each of the two PWM edges in each switching
cycle. In turn, this requires that the ADC must capture new meas-
urements of voltage and current at double-rate.

The PWM peripheral generates a hardware ADC start-of-conver-
sion signal at the timebase’s zero and period instants (black arrows
in Figure 3) that triggers the ADC conversion of the analogue
voltage and current sensor signals. In turn, the completion of the
ADC conversion sequence triggers an interrupt to run the control
algorithm (blue arrows). The control algorithm calculates the new
duty cycles for each phase and updates the compare registers (red
arrows). The new compare values take effect in the next PWM
half-cycle (black arrows).

The various events, triggers and interrupts are configured by the
SwitcherWare Library resources at initialisation time of the applica-
tion. The real-time orchestration of them at run time is handled by
the MCU hardware without any intervention from user code.

Other PWM and control schemes are easily achieved, but are bey-
ond the scope of this manual.

Constant V/F Controller

The object theVFCtrl is an instance of the VFControl class that
implements a constant voltage-frequency controller for induction
machines. It has parameter variables for the voltage-frequency
constant and the boost voltage. These parameters and the de-
manded angular frequency are used to calculate the magnitude
and angular velocity of the output rotating voltage space vector.
This voltage space vector is passed as the demand input to the
converter object.

Ramp Generator

The object theFreqRamp is an instance of the Ramp class that im-
plements a ramp limiter. It has separate parameter variables for
the increment and decrement rates. The output value is ramped at
these rates towards the target value.

This object is used to rate limit the user demanded value of angular
frequency. This prevents discontinuities in the demand value that
is sent to the motor control object.

3/17

Denkinetic Ptv Ltd

Example BasicDriveVF

APPLICATION NOTE

utStateCurr i

i theStateMachine

o / theFregRamp. theVFCtrl.
H Update() Update()
theConverter. F28xxx
UpdateOutput_SVM() EPWM
vdc_link. |
Update
2 0 theBasicDrive.UpdateControl()
theBasicDrive.UpdateOutput()
F28xxx
ADC
1] theRealTimeScope. F28xxx
Tu.Update() L Update () SPI

Figure 4: Block diagram for the interrupt service routine ISR_PWMControl() that executes the motor control algorithm. Blue blocks
represent operations performed by calls to object member functions or C statements. Grey blocks represent operations performed by

the MCU hardware peripherals. The blocks with dotted outline represent variables.

Analogue Outputs

The object theRealTimeScope is an instance of the
ModuleAOV@O1 class that is a code wrapper for interfacing to a
AOV001 4-channel isolated analogue voltage output module. The
object is initialised in main(), where, for each output channel, a
pointer to the target floating-point variable and scaling parameters
are stored. The Update() function is called at the control fre-
quency after the motor control is performed. The object sends the
current value of the target variables by SPI bus to the DAC on the
module.

Project Objects

State Machine

The object theStateMachine tracks the basic operational states
for the drive — Ready, Run, Fault. Transitions between states are
controlled by input commands (Start, Stop, Reset) and flags. This
object provides a structured way to start and stop the drive, handle
faults and allow extension of features. See Figure 5.

The current state is stored in the member variable theStateMa-
chine.outStateCurr. By itself, the value of the current state has
no meaning and does not affect the operation of the application. It
is up to the developer to read the value of the current state and to
modify the operation of the application according to what this state
means for the application. For example, when the state is Run, the
application should execute the control algorithm and enable PWM
to the converter. And when the state is Ready or Fault, the applic-
ation should reset the controller to suitable initial conditions and
disable the PWM.

Similarly, the state machine has no knowledge about when the cur-
rent state should be changed. It is up to the user to identify when
a change of state is required. You should not change the state by
modifying theStateMachine.outStateCurr directly. Instead,
you should send a command to the state machine to request the
change of state. You do this by writing the request into the mem-
ber variable theStateMachine.inCommand and then calling the
member function theStateMachine.Update(). If the request is
successful, the value of the current state will be changed and the
application will respond according to the new state.

Figure 5: State transition diagram for the BasicDriveVF project.
The blue circles are the states and the arrows between them are
the state transitions. The commands that request the transitions
are labelled on the transition lines. Flags that allow various
transitions are shown in the dashed red boxes. The dashed
black lines indicate automatic (non-user) transitions.

In the project of this application note, the user interacts with the
state machine through the debug environment of CCS. The input
command and flags are manually changed by the user to request
changes to the state. A background task periodically calls the Up-
date() function to process the input command and flag values.

The state transition Ready to Run is requested by using the Start
command, but is also controlled by the flag theStateMa-
chine.inFlags.bit.allowStart. The flag must be set to allow
the transition. In this application, the flag is set at initialisation
time, so the transition is allowed every time it is requested. In other
applications, the transition can be controlled by setting and clear-
ing the flag according to suitable conditions, e.g. the DC link
voltage must be in a certain range, etc.

Denkinetic Ptv Ltd

4/17

APPLICATION NOTE

Example BasicDriveVF

This project features two extensions to the basic state machine.
See the next section Basic Drive for more details.

It adds a Null state, whose intention is to allow the offset in current
sensors to be nulled. It can be accessed only from the Ready state
and automatically returns to the Ready state when nulling is com-
plete.

It also adds a Test state, whose intention is to allow developers to
validate the hardware inputs and outputs of the SwitcherGear con-
troller with the control loops disabled. Each request for entry to the
Test state must be allowed by manually setting the flag
theStateMachine.inFlags.bit.allowTest.

Basic Drive

A BasicDrive object is created in the project to initialise the above
objects and implement the V/F drive functionality. The object
provides separate functions for reading control inputs, performing
the control algorithm and writing the control outputs. The beha-
viour implemented by these functions depends on the state of the
state machine.

When the state of the drive is Run, the user input variable userMo-
torFreq is passed through a range limiter and the ramp generator
before being passed to the VF control object. This object calcu-
lates the magnitude and orientation (i.e. the space vector) of the
motor voltage, and passes it to the PWM generator. The state of
the state machine is used as an input to the BasicDrive object to
allow or disallow motor control and the generation of PWM signals.
See Figure 4 for a block diagram of the control algorithm execu-
tion.

When the current state is Null, the application should disable the
PWM (to force the currents in the power system to be zero) and
null the offset in the current sensors by calling Iu.Null(0.0), etc.

When the state is Test, the application reads the controller inputs
(current and voltage sensors) and enables the PWM duty calcula-
tion and PWM outputs. The control algorithm is not executed. The
user can use the debug environment to check the values of the in-
put variables and manually change the controller outputs to valid-
ate the effect on the converter switching. The converter should be
disconnected from supplies, loads, etc. before entering this state.

For all other states, the object resets the various control objects
and disables the PWM peripheral hardware.

Task Scheduling

The operation of the application is achieved using the concept of
tasks. Each tasks is executed by the MCU as either a background
or a foreground task — see Figure 6. The tasks are implemented as
functions and are defined in main.cpp.

Background Tasks

(main())
I

Foreground Tasks

(1sr_PwMControl())

0y

| InitSwitchGearBase() | Read ADC
Update
Init ADC V/F Control

Update PWM

Init PWM

| Init StateMachine |

L

Data capture
& visualisation

| Init BasicDrive |

Return

| Init Background Tasks |

Init Interrupts

Poll Tasks
State machine
LEDs

L 1

C sRTp))

Set fault state

Figure 6: Tasks for the BasicDriveVF project.

Background tasks are low priority tasks and are executed one at a
time on a periodic schedule in the main() context. After initialisa-
tion is complete, main() drops into an infinite loop that polls for
pending tasks. The scheduling of tasks is handled by the back-
ground task manager, the object theBackgroundTaskMgr. Back-
ground tasks in this project include updating the state machine ob-
ject, flashing the front panel LEDs, reading the temperature of the
SwitcherGear base.

Foreground tasks are critical tasks that must be executed when se-
lected events occur. They are implemented as hardware interrupts.
The various SwitcherWare Library objects configure the MCU re-
gisters to trigger the interrupts automatically. When events occur,
the execution of the current background task is immediately sus-
pended and the interrupt is executed. The background task re-
sumes after the interrupt has completed.

The foreground tasks in this project are the drive control algorithm
(see Figure 4) and the trip fault handler. The execution of the drive
control interrupt ISR_PWMControl() is triggered by the completion
of the ADC conversion sequence.

The execution of the trip fault interrupt ISR_Trip() is triggered
when the fault signal from any of the half-bridge gate drivers goes
active (logic low). The EPWM peripherals are configured to latch all
gate signals off when the trip signal is active.

Data Capture

The object theDataCapture is an instance of the DataCapture
class, which provides a simple method to capture application data.
At each capture time, it copies a vector of up to 16 floating-point
(float) variables to a buffer array in memory.

The copying process uses the DMA peripheral of the MCU, so data
can be captured at mega-samples per second rates without signi-
ficantly affecting the execution time and without the limitations of
transferring real-time data over a serial communications link. After

5/17

Denkinetic Ptv Ltd

Example BasicDriveVF

APPLICATION NOTE

the data capture is complete, the buffer can be transferred at a
slower rate to the PC.

The data can be captured every control cycle or at some other rate
that is related to the control process. This greatly simplifies post
processing and comparison with simulation results.

If the process to be captured is periodic, the capture can be star-
ted manually and left to capture data for as many periods as re-
quired. For transient events, the capture can be triggered on the
event.

The amount of data that can be captured is limited primarily by the
available memory. The MC28377D micro card includes a large ex-
ternal SDRAM memory to allow large data captures.

Code Generation Tools

Code Composer Studio

The Code Composer Studio (CCS) software from Texas Instru-
ments (T) is required for all installations because it includes the C/
C++ compilers for the host MCUs.

CCS also provides:

® an integrated development environment based on Eclipse to
edit, build and debug embedded C/C++ applications;

® the GUI Composer tool to build and deploy custom graphical
user interfaces.
Download CCS Installer

Download the latest version of Code Composer Studio from the
Texas Instruments website.

http://processors.wiki.ti.com/index.php/Download CCS

Installers are available as web installers or off-line installers.

Install CCS

Execute the installer application and follow the installation instruc-
tions.

The typical installation option will install code generation tools for
all TI MCUs and multiple debug probes, including those required
by SwitcherGear.

To reduce the installation size, you can choose the custom installa-
tion option. In this case, you must ensure that the C2000 code
generation tools and the drivers for your debug probe are installed.

Licensing
A licence is not required for CCS version 7 and above.
See the CCS licensing web page for more information.

http://processors.wiki.ti.com/index.php/Licensing - CCS

C2000Ware

The C2000Ware package must be installed because it provides the
device support header files and the C/C++ run-time libraries for the
C2000 MCUs. C2000Ware also provides much reference material
for the C2000 family of MCUs and includes the datasheets and
user guides for all MCUs, application libraries and example pro-
jects for MCU core and peripherals.

If C2000Ware is already installed on your PC, it is recommended
that you update to the latest version.

Download C2000Ware from the Tl website and install on your PC.

http://www.ti.com/tool/c2000ware

Install LibreOffice

The LibreOffice office suite is required to open the SwitcherGear
Configuration document.

Download LibreOffice for free from

http://www.libreoffice.org/

Debug Probe

The debug probe is a hardware tool that connects to the JTAG in-
terface of the target MCU. A Texas Instruments XDS110 debug
probe is recommended.

The 14-pin connector of the debug probe is connected to the JTAG
interface connector on the front panel of the SwitcherGear control-
ler. The JTAG interface is isolated to eliminate ground loops and
reduce electromagnetic interference (EMI).

Use a USB cable to connect from the USB port of the debug probe
to the laptop or PC that runs the Code Composer Studio software.

Hardware Configuration

Power System

Connect the power system as shown in Figure 7. The connections
should be made using insulated test leads that have shrouded
4 mm safety connectors and a suitable current rating. The leads
should be twisted into harnesses to minimise the generation of ex-
ternal fields.

(e Xo)

[e X

SemiTeach IGBT

Figure 7: Connections of the power system.
SwitcherGear Controller

Microcontroller

The BasicDriveVF example project is available for two target
MCUs: F28335 and F28377D. In this reference manual, the Denk-
inetic MC28377D microcontroller card [1] is installed in the MCU
slot of the SwitcherGear controller base [2] and the corresponding
project is used.

Converter Interface

The gate and fault signals of the SemiTeach power stage are
brought to BNC connectors on the front face of the unit. A Switch-
erGear ADP002 3-phase adaptor kit converts the BNC connections
for each half-bridge to a ribbon cable connection.

A 3-phase half-bridge interface module [3] is mounted in slot MRE
of the SwitcherGear base.

Use 20-way ribbon cables to connect from the SemiTeach power
stage connect to the CON0O02 module. The connections should be

Denkinetic Ptv Ltd

6/17

http://processors.wiki.ti.com/index.php/Download_CCS
http://www.libreoffice.org/
http://www.ti.com/tool/c2000ware
http://processors.wiki.ti.com/index.php/Licensing_-_CCS

APPLICATION NOTE

Example BasicDriveVF

ordered so that half-bridges 1/2/3 of the SemiTeach power stage
are connected to the HB1/2/3 half-bridge interfaces of the CON002
module.

The gate drive and fault signals in the ribbon cable all use 15 V lo-
gic levels and the ribbon cable carries alternating ground traces.
This provides a high degree of protection against EMI.

Current Measurement

The motor currents from half-bridges 1/2/3 of the SemiTeach
power stage are connected through three SNIO05 current sensors
[4]. These current sensors have a transfer gain of 1 mA output cur-
rent for every 1 A input current.

An AIN0O4 4-channel sensor input module is mounted in slot MRB
of the SwitcherGear base. For this example project, the first three
channels of the module are configured for a bipolar input range of
+20 mA - refer to the module reference manual [5] for instructions.
This gives a sensor measurement range of +20 A, which is suitable
for measuring AC currents up to 14 A RMS.

Connect the output cable of the first current sensor accessory to
pins 1-3 of the system connector of the AINO0O4 module. Connect
the second and third sensors to pins 4-6 and pins 7-9. Refer to
the module reference manual for the connector pin-out.

The processed current signals are on pins A0/A1/A2 of the mod-
ule's MCU interface. Because the module is installed in slot MRB,
these connect to pins MRBAO/A1/A2 of the base's module slot
connector.

Voltage Measurement

The DC link voltage is connected to a SNV005 voltage sensor [6].
This voltage sensor has a transfer gain of 20 pA output current for
every 1 Vinput voltage.

For this example project, the fourth channel of the sensor input
module is configured for a unipolar input range of 0 to 20 mA —
refer to the module reference manual [5] for instructions. This gives
a sensor measurement range of 0 to 1000 V.

Connect the output cable of the voltage sensor accessory to pins
10-12 of the system connector of the AINO04 module.

The processed voltage signal is on pin A3 of the module's MCU in-
terface. Because the module is installed in slot MRB, this connects
to pin MRBAS3 of the base's module slot connector.

Analogue Output

An AOV001 4-channel isolated analogue output module [7] is
mounted in slot MFB of the SwitcherGear base. (If you are using
an AOUO001 module, all channels of the module must be configured
for a +10 V output range - refer to the reference [8] manual for in-
structions.)

Use coaxial cables to connect from the module's system connector
to a 4-channel oscilloscope. This is used in this example project to
allow signals in the digital domain to be visualised on an oscillo-
scope.

Install The SwitcherWare Library

Each SwitcherGear controller includes a license for the Switcher-
Ware Library. Refer to the Install SwitcherWare Application Note [9]
for detailed installation instructions.

Documentation for the SwitcherWare Library is located in the doc-
ument folder in the install folder.

CCS Workspace

You should build the starter project in a new CCS workspace.

The first time that you open CCS, a new workspace will be created
and you will be prompted to choose the file system location.

If you already have an open workspace, you can make a new work-
space by selecting from the File menu Switch Workspace >
Other... and browsing for a new file system location.

Set Build Variables

The example project uses path variables to define the locations of
the C2000Ware device support resources and the SwitcherWare
Library resources. The path variables must be defined in CCS be-
fore the project can be built. They can be set manually or imported
from a file.

The simplest way is to import the path variables from a file. The
SwitcherWare Library install folder contains the file vars.ini that
contains the required path variables.

Before importing the path variables, you must open the vars.ini
file in a text editor (e.g. drag the file into CCS) and ensure that the
paths are defined correctly for your system. The path definitions in
the file reflect the paths based on standard install locations and
versions of the resources when the file was created. You must edit
the paths if your code resources are installed in different locations,
or the resources are a different version. There are instructions in
the file itself.

Then import the path variables into your CCS workspace:

® |n the Windows menu, select the Preferences menu item to
show the Preferences dialogue box. See Figure 14.

® |n the navigation pane, select Code Composer Studio > Build >
Variables to show the Variables preferences.

= Click on the Import... button to show the Import Build Vari-
ables dialogue box.

® Click on the Browse... button, then navigate to and select the
vars.ini file in the SwitcherWare Library install folder.

® Make sure the Overwrite existing values check button is
checked.

® Click the Finish button to import the path variables.

You can also manually setup the path variables — see the Install
SwitcherWare Application Note for details.

5 |-

type filter text Variables GrvDv .
General
+ Code Composer Studio
Advanced Tools
~ Build
Compilers.

Name Type Value Add.

Environment

Debug

Grace = o
products | 7 Import Build Variables = - -

Help Select File
Install/Update

Javaseript
Run/Debug
Team

Select the build-variable file to import.

Build-variable file: | g

Terminal

Varizble scope: | Workspace |

Ovenwrite existing values

Restore Defaults Apply

@) show advar

Figure 8: Importing build variables into the CCS workspace.

7/17

Denkinetic Ptv Ltd

Example BasicDriveVF APPLICATION NOTE

M R B MODULE TYPE AINGGZ
MODULE DESC 4-channel analogus input, sensor current 20 to 200mA

USER COMMENT Module for SNI003 current sensor accessory

DXP HOST MCU SWITCHWARE SIGNAL OBJECTS
MICU INTERFACE LOGIC CLASS OBJECTNAME CONSTRUCTOR CONSTRUCTOR
Pin Signal Dir Invert Mcu Signal Dir _ Bias Pin Argl Arg2 Definition

=
"

MRBD0 -) 0 <Hone> <None> WRBDO <None> MRED@

MRBD1 o 0 <None> - - <None> MRBD1 <None> MREDL

MRBDZ o] <Nane> - - <None> MRBD2 <None> MRBD2

MRED3 0 o <HNonex> - - - <Nonex MRBD3 <Mone> MRBD3
- MRBD: o] <Nane> - - <None> MRBD4 <None> MRBDA
& WRBD5] L] <Nane> - - - <None> MRBDS <None> MRBDS
2 MRED& 0 o <Nane> - - - <None> MRBD& <None> MRED6
8 MRBD7 0 0 <Nane> . . <None> MRBD7 <Hone> MRBDT

MRBDE o 0 <None> - - <None> MRBDS <None> MREDS

MRBDY o] <None> - - <None> MRBDY <None> MRBDY

MREBD10 0 o <None> - - - <Nonex> MRBD10 <None> MRBD18

WRBD11 - - o] <Nane> - - - <None> MRBD11 <None> MRBD11

MICU INTERFACE ‘ CLAss OBJECTNAME CONSTRUCTOR CONSTRUCTOR

Pin Signal |ADC Input ZeroScale. Fullscale . Definition

WRBAD vouTo ADCING3 AinPinScaled u 20000 20.000 AinPinScaled Iu(ADCING3, -28, 20);
g MRBAL VouTL ADCINDL AinPinScaled v -20000 20.000 AinPinScaled Iv(ADCIND1, -28, 28);
‘zt MRBA2 vouT2 ADCINC2 wwinscaleﬂ Iw(ADCINC2, -2, 28);
< MRBA3 VouT3 ADCINDO AinPinScaled Vdc_link 0.000 1000.000 AinPinScaled Vdc_link(ADCINDS®, @, 188@);

Figure 9: This figure shows the complete Signals entry in the SwitcherGear Configuration document for the MRB module slot, which
has an AIN004 module installed in it. It shows the pins of the modules MCU Interface (left side), the pins of the Host MCU (centre) and
the SwitcherWare Signal Objects entries. Each row represents the routing of a single signal from the module pin to the MCU pin in the
physical domain to the code domain.

In this example project, the current sensors are wired to Channels 0/1/2 of the module’s system connector and the processed signals
output the module from the MCU Interface Pins MRBAO/1/2. Similarly, the voltage sensor is connected to Channel 3 of the system
connector and is available at MCU Interface Pin MRBAGS.

The names of the current sensor objects must be set as shown so that they match the names used in the example project code. (You
can use different names if you refactor the object names in the code.) The ZeroScale and FullScale constructor arguments must
match the physical measurement range of the sensors, which is determined by the gain of the sensors and the jumper settings of the
AINO004 module.

MCU INTERFACE ‘ cLass OBJECT NAME CONSTRUCTOR CONSTRUCTOR

pin Signal Dir__Act invert mcu signal Dir __ Bias_Pin Arg1 Arg2 Definition

MREDO HB1CHA n 1 e 0 & 001EPWM_1A ot iz 23 DigitalPin MREDO DigitalPin MREDB(8, peripherall);

MREDL HB1CHB n 1 e 0 & OLLEPWM_1B ot HZ 73 DigitalPin MREDL DigitalPin MREDI(1, peripherall);

MRED2 HBLTRIPR ot 0 > o <None> - - <None> MRED2 <None> MRED2

MRED3 HB2CHA n 1 e 0 & oz1EPWM_2A out HiZ 28 DigitalPin MREDS DigitalPin MRED3(2, peripherall);
o MRED4 HB2CHB n 1 e 0 & 03.1EPWM 2B out Mz 78 DigitalPin MRED4 DigitalPin MREDA(3, peripherall);
= MREDS HB2TRIPR ot 0 > o <None> - - <None> MREDS <None> MREDS
=] MREDE HB3CHA n 1 e 0 & 0a1EPWM_3A out HiZ 25 DigitalPin MREDG DigitalPin MREDG(4, peripherall);
8 MRED? HB3CHB noo1 e 0 & 05.1EPWM_3B out Mz 75 DigitalPin MRED7 DigitalPin MRED7(S, peripherall);

MREDE HBSTRIPN out 0 > o <None> - - <None> MREDS <None> MREDS

MRED9 HB123TRIPn out 0 > o = 13.0GPIO injout HiZ 80 DigitalPin MREDS DigitalPin MREDI(13, peripheral@d);

MRED10 - -1 o <None> - - <None> MRED10 <None> MRED1E

MRED11 1 o <None> - - <None> MRED11 <None> MREDI11

Figure 10: The digital MCU signal allocations (orange cells) for the CON002 3-phase converter interface module. In this configuration,
the HBxCHA/B signals of the CON002 module are mapped to the A and B outputs of the EPWM1/2/3 peripherals (green outline) — the
base peripheral is EPWM1. The combined trip signal is routed to GPIO13 (blue outline). The converter and ADC wrapper objects
must be initialised with this physical configuration data.

MCU INTERFACE ‘ cLass OBJECT NAME CONSTRUCTOR CONSTRUCTOR
Pin Signal Dir _Act Invert mcu signal Dir _ Bias _Pin Argt Arg2 Definition
MFE00 Csn in 0 < 0 ¢ 273MESKB infout HiZ 86 DigitalPin MFBDO DigitalPin MFBD(27, peripherals);
MESDL scix m 1 € 0 ¢ 263MCKXE injout HiZ 36 DigitalPin MFBD1 DigitalPin MEBD1(26, peripherals);
MFBD2 siMo n 1 e 0 & 243MDXB ot Hiz 35 DigitalPin MFBD2 DigitalPin MFBD2(24, peripheral3);
MFBD3 - 1 o <None> - - <None> MFBD3 <None> MFED3
- MFBDE FAULTn ot 0 > o <None> - - <None> MFBDS <None> MFBD4
g MFBDS - 1 0 <None> - - <None> MFBDS <None> MFEDS
g MFBD6 1 o <None> - - - <None> MFBDE <None> MFBDE
MFBD7 1 o <None> - - - <None> MFBD7 <None> MFBD7
MFBD8 1 o <None> - - <None> MFBDS <None> MFEDS
MFBD9 1 o <None> - - <None> MFBDS <Mone> MFEDS
MFBD10 1 0 <None> - - <None> MFBD10 <None> MFBD1®
MFBD11 1 o <None> - - - <None> MFBD11 <None> MFBD11

Figure 11: The digital MCU signal allocation (orange cells) for the AOV001 4-channel isolated analogue voltage output module. The
CSn, SCLK and SIMO signals of the module must be mapped to the corresponding MCU signals (green outline) of the McBSP_A or
McBSP_B peripheral. The AOV001 Module wrapper object must be initialised in main() with this peripheral data.

Denkinetic Ptv Ltd 8/17

APPLICATION NOTE

Example BasicDriveVF

Import BasicDriveVF Example Project

The BasicDriveVF example project is included in the SwitcherWare

Library install folder. You can import it into the new workspace by

following these steps:

® |n the Project menu, select the Import CCS Projects... menu
item to show the Import CCS Eclipse Projects dialogue box.
See Figure 12.

® Select the Select search-directory radio button, then click the
Browse... button to the right and use the browser to navigate to
and select the SwitcherWare Library install folder. Click OK.

® The Discovered projects: check list now shows all projects
found, including the BasicDriveVF example project.

® Click on the check box to select the BasicDriveVF example pro-
ject, or click on the Select All button to select all discovered
projects.

® Click on the check box to select Copy projects into work-
space.

® Click on the Finish button.

The project is imported into the workspace.

<"+ Import CCS Eclipse Projects i = o -
-
Select CCS Projects to Import N
Select a directory te search for existing CCS Eclipse projects. / /
-
O Select search-directory: Browse
®) Select archive file: C:\ArtShokal\Re\EasedDocuments\SF\Swwtcl’l | Browse... |
Discovered projects:
[] L0 Example SignalGeneratar F283770 Select All
[w] L3 Starter 3PhGrid F28377D
[w] L3 Starter BasicDriveVF F28333 Deselect All
[w] L0 Starter BasicDriveVF F283770
W3 SwitchWare
Automatically import referenced projects found in same search-directar
Copy projects into workspace
Open the Resource Explorer to browse available sxample projects...
@

Figure 12: Importing the SwitchWare Library into CCS.

If the version of your installation of CCS is older than the version
that was used to build the example project, then the import will fail
and CCS with display an error message explaining the conflict in
the compiler versions. The best way to resolve this issue is to in-
stall the latest version of CCS.

The file structure of the imported project is shown in Figure 13.

~ 75 BasicDriveVF Framework MC28377D1 [Active - Release]
[Includes
(= Release
v (= SwitcherGear Configuration
[&] AAE Signals.cpp
[R] AAE Signals.h
[} SwitcherGearCanfig.h
=| ReadMe.tt
i SwitcherGearConfigAAE CDP82 MC283770.0ds
™1 SwitcherGear Configuration AAE.pdf
~ [= SwitcherWare
s F28377D_FLASH cpul.cmd
48 MicroMC28377D1.cmd
v [targetConfigs

=| readme.tt
% TMS320F28377D.coml [Active
v = Texasinstruments
|5 F2837xD_CodeStartBranch.asm
4 F2837xD_Headers_nonBlOS_cpul.cmd
|4 AppObjects.cpp
[A AppObjects.hpp
[& BasicDrive.cpp
[BasicDrivehpp
[h] FaultCodeh
[£] main.cpp
|.g] StateMachine.cpp
[StateMachine.hpp

- DebugExpressions.txt

Figure 13: The file structure of the BasicDriveVF project.

Project Properties

You must check the project properties to ensure that they match
the debug probe that you intend to use and the version of the
C2000 build tools that are installed.

= |n the Project menu, select the Properties menu item to show
the Properties dialogue box.
® |n the navigation pane at the left, select General to show the

General properties. See Figure 14.

® |n the Connection drop down list, select your debug probe.
Click on the check box below to allow automatic target-config-
uration.

In the Compiler version drop down list, select the newest com-
piler version that is listed.

® Click on the Apply and Close button.

5 Properties for BasicDriveVF Framework MC28377D1 o X
ype filter text General Cror
Resource
Genersl
v Build Configuration: | Release [Active] | | Manage Configurations..

€200 Compiler
Processor Options
Optimization
Include Options

L Project | g Products.

Performance Advisor Device
Predefined Symbols Famits €200
Advanced Options
2000 Linker Voriont: | <select ortype fiter text> -] [wss20r28377D -
C2000 Hex Utility [Disabled] Connectiof| Texas Instruments XDST00v2 USB Debug ~ || Verify. (applies to whole project)
Debug |

Manage the project's target-configuration automatically

Tool-chain

Compiler version: TIVI6S.6LTS [TIv181.1LT5] vl More
Output type: Executable

Output format: legacy COFF v

Device endianness: | litle

Linker eommand file: |][Browse
Runtime support library: s2800_fpu32.lib][Browse

@
(@) show advanced settings

Apply and Close Cancel

Figure 14: The general properties of the project, showing the
selections for debug probe and compiler version.

9/17

Denkinetic Ptv Ltd

Example BasicDriveVF

APPLICATION NOTE

Configuration Document

The SwitcherGear Configuration document and the automatically
generated source/header files in the example project archive are
based on a generic SwitcherGear configuration and reflect the
SwitcherGear configuration described in this manual. They are
provided for reference only. They may not match the actual config-
uration of your specific SwitcherGear controller.

To run the example project with your SwitcherGear controller, you
must use the specific SwitcherGear Configuration document that
was supplied with your SwitcherGear controller. This document
contains the correct data for the physical configuration of your
controller.

Configurations are identified by a unique 3 letter code. If the con-
figuration of your SwitcherGear controller (see label on under side
of base unit) is the same as the files in the example project, you
can choose to ignore the following steps.

If your controller has a different configuration, the next sections ex-
plain how to change over the files for the BasicDriveVF project.
The file ReadMe.txt in the SwitcherGear Configuration project
folder also has instructions that are generally applicable.

Delete Existing Project Configuration Files

In the Project Explorer pane in CCS, select all files inside the
SwitcherGear Configuration project folder. See Figure 13 for
the structure of the project.

Press the delete key to delete the files, and confirm their removal
from the file system.

Copy the Configuration Document

Open an explorer window and navigate to the location of the
SwitcherGear Configuration Document that corresponds to your
SwitcherGear controller.

Use the mouse cursor to drag the Configuration Document from
the explorer window to the SwitcherGear Configuration pro-
ject folder in the CCS Project Explorer pane. This is the same pro-
ject folder that was emptied above.

In the File Operation dialogue box that appears, select the Copy
files radio button and click OK.

Open the Configuration Document

The document can be opened either from an Explorer window, or
from inside CCS. The first time you open a configuration docu-
ment in CCS, do so by right-clicking the file, select Open With >
System Editor from the context menu, navigate to the LibreOffice
program folder and select the calc.exe application.

LibreOffice may show a security warning about macros contained
in the document. Click on the Enable Macros button to enable
editing and automated generation of the SwitcherGear Configura-
tion source files. If you are not presented with this option, in
LibreOffice, open the preferences window by selecting the menu
Tools > Options. In the navigation pane select LibreOffice > Se-
curity. Then click on the Macro Security button and change the

security level to Medium. Close the file and open again with the
new security setting.

Modify the Configuration Document

Current sensor module

You must make the correct entries in the SwitcherGear Configura-
tion document to define software objects for the current sensor
signals. Refer to Figure 9 for the following steps:

® jdentify the hardware interface module in your SwitcherGear
controller that you will use for the current sensors;

= jdentify the slot in which it is installed;

® |ocate the signal entries for this slot on the Signals tab in the
SwitcherGear Configuration document; and

= edit the blue-highlighted analogue SwitcherWare Signal Object
fields to match those shown in Figure 9.

You may wish to set the class entry of unused signals on this and
other unused sensor modules to <None>. This removes the defini-
tion for these objects, which saves memory by not allocating space
for them.

Voltage sensor module

You must make the correct entries in the SwitcherGear Configura-
tion document to define software objects for the voltage sensor
signal. Refer to Figure 9 for the following steps:

® dentify the hardware interface module in your SwitcherGear
controller that you will use for the voltage sensor;

® jdentify the slot in which it is installed;

B |ocate the signal entries for this slot on the Signals tab in the
SwitcherGear Configuration document; and

® edit the blue-highlighted analogue SwitcherWare Signal Object
fields to match those shown in Figure 9.

You may wish to set the class entry of unused signals on this and
other unused sensor modules to <None>.

Converter module EPWM

If your SwitcherGear is configured to use a base EPWM peripheral
other than EPWM1, then you must edit the main.cpp source file.
Refer to Figure 10 for the following steps:

® jdentify the hardware interface module in your SwitcherGear
controller that you will use to interface to the converter;

® jdentify the slot in which it is installed;

® |ocate the signal entries for this slot on the Signals tab in the
SwitcherGear Configuration document;

= find the name of the MCU Signal that has been allocated to the
HB1CHA MCU interface signal, which indicates the base EPWM
peripheral.

= |f the base EPWM peripheral is not EPWM1, you must edit the fol-
lowing line of the source file main.cpp so that the EPWM num-
ber matches the EPWM value that you found above:

theConverter.Init(PERIPHERAL_ID_EPWM1, ...); // FIXME

The above lines of code in main.cpp are followed by a C comment
that begins // FIXME. (CCS indicates the position in the file of
these special comments with a blue marker in the right margin of
the text editor, next to the vertical scroll bar) The comments
provide specific information on the code resources that must be
matched to the hardware configuration.

Denkinetic Ptv Ltd

10/17

APPLICATION NOTE

Example BasicDriveVF

Converter module Trip signal

If your SwitcherGear is configured to use a GPIO pin for the con-
verter trip signal other than GPIO13, then you must edit the
main.cpp source file. Refer to Figure 10 for the following steps:

= find the name of the MCU Signal that has been allocated to the
HB123TRIPn MCU Interface Signal. It starts with numbers in
the format XX.Y, where XX is the GPIO number.

B Ensure that the second argument of the following function in the
source file main.cpp is equal to the GPIO number of the Trip
signal:

theTripSignal = theF2837xDCPU.CreateTripSignal(13, true);

Analogue output module

The initialisation function for the analogue output module must
refer to the McBSP peripheral that is allocated in your Switch-
erGear configuration, either peripheral A or B. Refer to Figure 11
for the following steps:

® jdentify the hardware interface module in your SwitcherGear
controller that you will use for the analogue signal output;

= jdentify the slot in which it is installed;

B |ocate the signal entries for this slot on the Signals tab in the
SwitcherGear Configuration document; and

B |ocate the MCU Interface Signals for the SPI bus, CSn/SCLK/
SIMO.

= |f the corresponding MCU Signals are MFSX_A/MCLKX_A/MDX_A,
you must ensure the following line of the source file main.cpp
has the first argument as highlighted here:

theRealTimeScope.Init(PERIPHERAL_ID_MCBSPA, DMA_CHANNEL1);

= |f the corresponding MCU Signals are MFSX_B/MCLKX_B/MDX_B,
you must ensure the following line of the source file main.cpp
has the first argument as highlighted here:

theRealTimeScope.Init(PERIPHERAL_ID_MCBSPB, DMA_CHANNEL1);

Generate Documents

Even if no changes were made to the SwitcherGear Configuration
document, you must generate the new source/header files.

Save the document.
Show the Project sheet by clicking the Project tab at the bottom of

the window.

Then click on the Generate Documents button to generate the
source files and PDF documentation for the SwitcherGear configur-
ation.

Code Execution

Make sure the debug probe is connected, SwitcherGear controller
is turned on and power system is turned off.

Click the toolbar Debug button FF or press the F11 key to debug
the project. This performs the following tasks:

® compiles the project source files;

= links the project with the SwitcherWare Library;

® connects the debug probe to the MCU target;

® erases the flash memory of the MCU target;

= writes the build object into the MCU flash memory;

® starts execution of the MCU to run the C environment initialisa-
tion code; and

B pauses the program execution at the start of main().

Any errors are shown in the Console View.

If you are building the project for the F28377D MCU, you will be
prompted to select the CPUs to load the program onto. Select
C28xx_CPU1 and deselect C28xx_CPU2, as shown in Figure 15.

<"+ Launching Debug Sessicn) o o -
The project PR48 Semikron3L F28377D is compatible with multiple CPUs in the target configuration.
Please select the CPUs to load the program on:

Texas Instruments XDS100v2 USB Debug Probe/C28xx_CPUL

[] Texas Instruments XDS100v2 USB Debug Probe/C28xx_CPU2

Select Al | | Deselect Al
[] Create a debug group for selected cores
Make the group synchronous
@

Figure 15: CPU selection when loading code to a dual-core
F2837xD for the first time.

During the above process, the view is changed from the Edit Per-
spective to the Debug Perspective, which shows information re-
lated to the debug process.

Now, click the toolbar Resume button UF* or press the F8 key to
start program execution.

Expressions

The Expressions View can be used to observe code variables and
control the program execution. The values in the Expression View
should be configured to update periodically by clicking on the &
icon (continuous refresh) in the toolbar area — see Figure 16.

The project file DebugExpressions.txt contains the key variables
that you can use to observe and control the application. Import the
variable names into the Expressions View by right-clicking in the
list area, selecting Import... from the context menu and selecting
the file in the file browser.

When the program is running, the real-time values of the variables
are shown in the list. In particular, you should see the voltage and
current signals fluctuating slightly — the Value field of a variable is
highlighted in yellow when its value is different from the previous
sample.

11/17

Denkinetic Ptv Ltd

Example BasicDriveVF

APPLICATION NOTE

(0= Variabl... €7 Expres.. 5% | Il Regist.. 9 Break.. == Disass.. [J Memo.. = O

sE| % X%E e -
Expression Type Value
(4= theBasicDrive.paramMotorRatedVoltage float 415.0
9= theBasicDrive.paramMotorRatedFrequency float 50.0
()= theStateMachine.Command enum SM_COMMAND
(9= theStateMachine.StateCurr enum SM_STATE
[theStateMachine StatusCurr bit struct SM_STATUS_BIT |\l ClE RIS
Command_Null
9= IsNulled unsigned int : 1
9= IsFault unsigned int : 1 0

)= userMotorFreq float ()
(= theFreqRamp.outProfile float 0.0
(9= theVFCtrl.inOmega float 0.0
)= theVFCHl. vstatorR2.q float 50
- theVFCtrl Theta float 0.0
9= theVFCHrl, outvstatorS2, x float 0.0
69= Tu.valueSd float -0.0012951392
6= Iv.valueSd float -0.0012951392
(9= Iw.valueSd float -0.0012951392
(9= Vdc_link. valuesd float 0.0
- theBackgroundTaskMgr.CPULoad float 0.0633683801
4= profileControl.delta long 852
v (& theDataCapture class DataCapture Lok

9= isArmed unsigned char 0 (Dedimal)

9= paramTriggerLevel float 1.0

Command_Start |+

Command_Stop

<

= paramSubSample int 10

» theDmaRegs struct CH_REGS * 0x00001040

9= valuePrev float 0.0

)= subSample int &
Figure 16: The Expressions View in the Debug Perspective.
When clicked for editing, the view shows the enumerated
constants for the state machine command variable. Use the up/

down arrow keys to select and Enter key to accept.

Change the parameters for the motor voltage and frequency rat-
ings by clicking on the Value field of the expression, typing the re-
quired value and pressing the Enter key.

Verify Controller Inputs And Outputs

Before operating the power system, you must verify that the inputs
to and the outputs from the SwitcherGear controller are functioning
correctly. These test are performed using low voltages.

A

& Use a multimeter to verify that the DC link is discharged.

Remove the 3-phase supply connections from the output
of the variable supply.

Voltage Sensor

Before turning on the mains supply to the power stage, you must
validate that the voltage measurement is working correctly. This is
important because the PWM generation algorithm uses the meas-
ured DC link voltage to calculate duty cycle.

Use a multimeter to measure the DC link voltage in the un-powered
state. Note that the voltage may not be zero because the gate
driver circuitry has parasitic charging paths.

Confirm that the value of the Vdc_link.outScaled variable
agrees with the multimeter reading within 3 V.

Now connect the output of a laboratory power supply to the DC
link and apply a voltage between 30 and 50 V. Confirm that the
value of the Vdc_1link.outScaled variable agrees with a new mul-
timeter reading.

Disconnect the multimeter and laboratory power supply.

Current Sensors

You should also validate the current sensor measurements, al-
though these are for monitoring purposes only.

Unplug the motor wiring connections from the phase U motor cur-
rent sensor. Confirm that the value of the Iu.outScaled variable
is within 0.1 A of zero. The zero current reading should be quite
accurate because the sensors were nulled at start-up.

Use the laboratory power supply in current source mode to apply a
3 to 5 A current through the sensor. Use the multimeter to measure
the current through the sensor. Confirm that the magnitude and
sign of the Iu.outScaled variable agrees with the multimeter
reading within 0.2 A.

Repeat the above steps with the other current sensors.

Disconnect the power supply and multimeter from the current
sensor, and reconnect the motor wiring.

Gate Drive Outputs
Disconnect the motor from the output of the converter.

Connect a laboratory power supply across the DC link, making
sure to observe the correct polarity. Apply a voltage of 30 V to the
DC link.

Change the state of the BasicDriveVF application to the Test state.
First, the entry to the Test state must be allowed. Do this by click-
ing on the “>” expansion symbol to the left of the theStateMa-
chine.inFlags.bit variable in the Expressions View to show the
flags allowStart and allowTest. Click on the value field of the
allowTest flag, change the value to 1 and press the Enter key.

Next, click on the Value field of the theStateMachine.inCommand
variable, click on the disclosure button that appears in the field to
show a drop-down list of the enumerated command constants -
see Figure 16. Select command_Test from the list and press the
Enter key. This will cause the state to change and the value of the
theStateMachine.outStateCurr variable will change from
state_Ready to state_Test. Notice that the value of the allow-
Test flag is automatically changed to ©.

The PWM outputs are now active and the IGBTs are being
switched to generate a voltage space vector. Confirm that the cur-
rent drawn from the laboratory supply is small. A large current may
indicate a mistake in the wiring of the motor circuit.

Use an oscilloscope to confirm that the voltage on each of the
three half-bridge outputs is a square wave that is switching
between the DC link negative and positive voltages. Confirm that
the switching frequency is 5 kHz.

You can manually change the demanded output voltage space
vector by writing new values to the variables theConverter.in-
Vdclink and theConverter.inVdemandS3. You should confirm
that a change to theConverter.inVdemandS3.u affects the PWM
duty of the phase U output of the converter, and so on. (This pro-
ject uses SVM, so the duty of the other phases will be affected
slightly.)

Issue the Stop command to change the state to Ready and disable
drive operation.

Disconnect the laboratory power supply.
Reconnect the motor to the output of the converter.

If all the above checks were successful, proceed to the next sec-
tion.

Denkinetic Ptv Ltd

12/17

APPLICATION NOTE

Example BasicDriveVF

30.0 300.0

10.0 100

/

0.0

T Y
ms

30.0

40.0

50.0

Pico Technology www.picotech.com

Figure 17: Real-time visualisation of controller variables using the AOV001 Module and a 4-channel oscilloscope (trace colour, unit):

user demand frequency at output of ramp limiter (blue, Hz); voltage space vector angle (red, radian); demand phase U output voltage

(green, V); and, measured phase U motor current (yellow, A). All the input channels are set to a physical range of +10 V and the signal

scaling seen here is achieved using the probe scaling method described in the text. The yellow diamond indicates the oscilloscope

trigger position on the falling edge of the space vector angle, when its value wraps from mt to -m.

Drive Operation

A
A

Turn off the variable supply. Then reconnect the 3-phase supply
connections to the output of the variable supply.

Hazardous voltages are present in the following steps.

Before proceeding, you must make a risk assessment
and put in place measures to ensure safety of personnel
and equipment.

Connect a multimeter to measure the line-line input voltage to the
SemiTeach rectifier.

Turn the voltage adjustment of the variable supply to zero. Then
switch on the supply.

Issue the Start command to change the state to Run and enable
drive operation. The converter is now actively switching and apply-
ing a PWM modulated voltage to the motor.

Increase the supply voltage gradually until the nominal supply
voltage is reached, or no more than 400 VAC.

Now use the multimeter to measure the DC link voltage. Confirm
that this value agrees with the DC link voltage measured by the
SwitcherGear controller in the Vdc_link.outScaled variable.

Change the value of userMotorFreq to 10 Hz.

The value of the theFreqRamp.outProfile variable will ramp
slowly from 0 to 10 Hz. Correspondingly, the value of the theVFC-
trl.inOmega variable will ramp from 0 to 62.8 rad/s. The motor
should be spinning and the measured currents should be fluctuat-
ing.

The Expressions View can be used to observe variables that
change slowly from one sample to the next, i.e. variables that are
static or varying slowly during drive operation or in the rotating ref-
erence frame. Variables that change faster than the sample rate
will be hard to interpret, i.e. the space vector angle and the
voltages and currents in the stationary reference frame.

Data Visualisation

Real-time visualisation of digital variables is ideal for observing AC
and transient behaviour. It can be used to observe any float vari-
able in the controller, which can include measured quantities.

The AOV001 module generates an output voltage in the range of
+10 V. For the best performance, you should set the input range of
the oscilloscope channels to this range, or the closest available
range. Some oscilloscopes have a +10 V range setting or a 2.5 V/
div setting that matches the module's output range. For other os-
cilloscopes, a setting of 2 V/div is the closest, which gives a dis-
play range of +8 V. Once you have set the input range do not ad-
just the range settings.

Most oscilloscopes have a probe scaling feature that can be used
to recover the original scaling of the digital variables. Set the probe
gain of each oscilloscope channel to the paramvValuePerOutput
value used in the initialisation of each analogue output channel. If
you use this method, you must not adjust the oscilloscope scaling
by changing the input range setting that was made in the previous
paragraph.

You can use the oscilloscope in the usual way to investigate the
waveforms from the SwitcherGear controller. Figure 17 shows a
screen image of the variables that are output with the default set-
tings of the BasicDriveVF project. The input range of the oscillo-
scope was set to +10 V and the probe scaling of each channel was
set to recover the original scaling of the digital variables.

13/17

Denkinetic Ptv Ltd

Example BasicDriveVF

APPLICATION NOTE

Some oscilloscopes have a high resolution mode that enhances
the detail of the traces. This can improve the clarity of the traces
significantly. An oscilloscope with a high resolution ADC (10 to 12
bits) will also give improved results.

The oscilloscope can also be used to capture the results by saving
the screen image or the raw channel data. This is a simple method
to capture the data, but the analogue signal chain introduces errors
and noise. Also, the captured data is not sampled at the control
frequency and requires post-processing to re-sample it.

Data Capture

In this project, the data capture object is initialised to capture the
same four variables that are output by the analogue output module,
with 1000 samples captured into the external SDRAM of the
MC28377D micro card.

In the Expressions View, expand the object theDataCapture to
show its member variables. The default format of the value of the
bool variable varTriggerArmed is not clear. Right-click on the
variable varTriggerArmed and select the contextual menu item

Number Format > Decimal. The value will now show as 0 for false
and 1 for true.

In the armed condition, the object waits for the condition that will
trigger the data capture. The member function
ConfigParams_TriggerRisingEdge() triggers the data capture
when the trigger signal crosses inTriggerLevel in the rising dir-
ection. This is the same trigger behaviour as the rising edge trigger
feature used in all oscilloscopes. The trigger signal is passed as
the argument in the function call, and in this project the ramp lim-
ited user demand frequency is used.

If the motor is already running, set userMotorFreq to 0.0 and wait
for the ramp to reach the target value. Then, set the member vari-
ables inTriggerLevel to 5.0 and varTriggerArmed to 1. Now
set the value of userMotorFreq to a value of 10.0. The data cap-
ture will be triggered as the frequency ramps through 5 Hz and will
capture the 1000 samples at the control rate.

To see the captured data, click on the View menu and select the
Memory Browser menu item. Select Data in the memory type
drop-down list. In the address field to the right, type 0x80000000
and press Enter. In the Data Format drop-down list, select 32-Bit
Floating Point. See Figure 18.

@ Memory Browser i3 E- R AR R N Yy
[Data v] [exeo000000 =
Data:0xE0000000 <Memory Rendering 2> 52

32-Bit Floating Paint v

BX3800808E 1.80814126
2x32002088 1.82014458
ex32e02018 1.8481479

8x38608018 1.86815122
ex3gepeeze 1.88215458
2x32002028 1.182157865
8x32008038 1.1281611%
2x32002038 1.14216249
2x3eeseess 1.16816781
8x32002048 1.12817113
8x38000858 1.20917445
@x3eeeeess 1.22017777
8x32008068 1.24212189
8X3800E0EE 1.26818441
@x3eeesere 1.28218773
8x320020728 1.39819104
Bx38008038 1.32019436

<= v = 0

1.5717832
1.63517892
1.69991112
1.76598825
1.83314621
1.901649
1.97149284

-11.7778749
-11.8887577
-11.9487895
-11.953392

-11.8985682
-11.788159

-11.5942993

-2.8812951392 ~
-2.2212951392
-2.8212951392
-2.8812951392
-2.8212951392
-2.8212951392
-8.8812951392
-2.8212951392
-2.8212951392
-2.8812951332
-2.8812951392
-2.2212951392
-2.8812951332
-2.8812951392
-2.2212951392
-2.8212951392
-2.8812951392

2.82242539
2.11459841
2.18222285
2.26301599
2.33905983
2.41636862
2.49491811
2.57473278
2.65520368
2.738132

-11.3372128
-11.8862751
-18.5988852
-18.1185789
-9.54201984
-8.89148129
-8.15843773
-7.34367418
-£.44858827
-5.47558483

Figure 18: The captured data shown in the Memory Browser
View.

To download the captured data from the MCU to your PC, right-
click on the Memory Browser View and select the Save
Memory ... contextual menu item.

On the first page of the Save Memory dialogue box, enter the path
and name for the saved data file, select Tl Data from the File Type
drop-down list, then click the Next > button.

On the second page, select 32-Bit Floating Point in the Format
drop-down list and type 0x8000 0000 in the Start Address text
box. For the Length radio group, select the second option to spe-
cify the data block dimensions. Type 1000 in the Number of Rows
text box for the number of vectors stored in the buffer. Type 4 in
the Number of Columns text box for the size of the vector. See
Figure 19. Click the Finish button. Depending on the amount of
data and the speed of the debug probe connection, it can take a
few seconds or a few minutes to transfer the data.

"+ Save Memory & - o -
Save Memory
Enter the information for the memory block to be saved

Format: |32-Bit Floating Point v

Target
Start Address: | 0xB0000000 |

Memory Page: | Data vl

Length:

(O Specify the number of memary words to read:

(®) Specify the data block dimension in number of memory words:

Number of Rows: Number of Columns:

®

Figure 19: Settings for saving the capture data buffer.

Optimisation

By default, the compiler optimisations in the BasicDriveVF project
are turned off. You can use some simple tools in the SwitcherWare
Library to estimate the number of instruction cycles the control al-
gorithm takes to execute and the overall load on the MCU.

The object profileControl is an instance of the Profiler class.
The Entry() and Exit() member functions are used to bracket
the code section of interest. The outCycles member variable con-
tains an estimate of the number of instruction cycles that elapsed
between these function calls.

The variable theBackgroundTaskMgr.varCPULoad is an estimate
of the total load on the F28 CPU. The value ranges from 0.0 to 1.0,
where 0.0 indicates that the CPU is idle. This is is an estimate of
the total time spent executing the background and foreground
tasks, including “hidden” overheads such as context saving for in-
terrupts, etc.

These are the basic tools for evaluating the effect of code changes
and optimisations.

Issue the Stop command to the state machine and confirm that the
state changes to Ready. Notice that the CPU load and the execu-

Denkinetic Ptv Ltd

14/17

APPLICATION NOTE

Example BasicDriveVF

tion time of the profiled control code decrease because the V/F
control blocks are not executed in the Ready state.

Click the toolbar Terminate button to end the debug session. The
environment changes back to the Edit Perspective.

Right-click on the BasicDriveVF project in the Project Explorer
and select the Properties context menu item. Navigate the tree
structure on the left side of the Properties dialogue box to show
the Build > C2000 Compiler > Optimization properties. Set Op-
timization level to 4 — Whole Program Optimizations and Speed
vs. size trade-offs to 5. See Figure 20. Click the OK button.

"~ Properties for SwitchGear Starter BasicDriveVF F28377D = - | = -
type fiter text Optimization PR
Resource
General
© Buid F28377D Release [Active] | [Manage |
v €2000 Compler
Processor Options
Optimization
Include Options Optimization level (--opt level, -0} off v
Performance Advisor
Advanced Options Speed v size trade-offs (--opt_for_speed, -mf) off
C2000 Linker 0- Register Optimizations
C2000 Hex Utiity [Disabled] 1- Local Optimizations
Debug Allow reassociation of FP arithmetic (--fp_reassoc) 2 - Global Optimizations
3 - Interprocedure Optimizations
Floating Point mode (--fp_mode) 4~ Whole Program Optimizations
() Show sdvanced settings

Figure 20: Optimisation level setting in the project Properties
dialogue box.

Debug the project to re-build and run the application.

Table 1 shows the typical reduction in execution time and CPU
load after the optimisations are enabled. It should be noted that
even with compiler optimisation turned off for the BasicDriveVF
project, there are many other optimisation that are already in play:

® the SwitcherWare Library is coded to take advantage of the
C28x instruction set and the MCU hardware peripherals.

® the SwitcherWare Library is compiled with optimisation turned
on.

® time critical code is executed from RAM, which is slightly faster
than executing code from flash memory.

® the FPUfastRTS library is used to improve floating-point maths
operations.

Table 1: Improvement of code execution time due to compiler
optimisation. Data for the state machine in Run state.

Optimisation Unit
None |Level 4
theBackgroundTaskMgr.varCPULoad | 0.0636 | 0.0444 -
profileControl.outCycles 855 523 | cycle
Execution time of profiled code 4.28 2.62 us
(instruction rate 200 MHz)

Extensions To The BasicDriveVF Project

GUI Composer Interface

You can build a graphical user interface for this controller using GUI
Composer. Use standard controls (buttons, sliders, dials, etc.) and
displays (text fields, indicators, etc.) to build an interface. Then
bind these interface elements to variables in the application code.

GUI Composer is a web-based tool on the Texas Instruments web-
site at

https://dev.ti.com/

Add Inrush Current Limiting

To use the basic drive from a non-variable supply, an inrush current
limiting circuit (also known as a soft-starter or pre-charger) must be
added to protect the power stage. This consists of current limiting
resistors in series with the supply and a 3-phase contactor that by-
passes the resistors after the DC link is charged.

A DIO003 8-channel digital input/output module is added to the
SwitcherGear controller to provide a 24 V switched output to con-
trol the contactor. This can be used to directly drive contactors
whose coils are rated for 24 V with a steady-state current require-
ment up to 0.5 A, (or 1.6 A if four module channels are used in par-
allel).

Finally, the state machine is altered to introduce a new charging
state, which must be active when the DC link voltage is low. The
state is used to control the bypass contactor and enabling of drive
operation.

Control The Drive With Digital I/0

To allow control of the drive without CCS and the debug probe, you
can build a digital I/0 interface. Using a SwitcherGear DIO003
module, you can connect push buttons that allow users to control
the application, and indicators that allow the application to show
operational status to the user. Three buttons can be used to issue
commands to the state machine — Start, Stop and Reset. Two
more buttons can be used to jog the demand frequency up and
down.

Control The Drive Over Serial Communications

To allow control of the drive without CCS and the debug probe, you
can build a serial communications interface. = SwitcherGear
provides interface modules for the standard serial communications
RS-232, RS-485, CAN and Ethernet.

Port The Control Algorithm To The CLA Co-Processor

The MC28377D is a dual-core microcontroller and each F28 CPU
core has a CLA co-processor. All operate at the same maximum
instruction clock frequency, 200 MHz. The CLA is optimised to
perform real-time control and it is ideal for executing the fore-
ground control task. Not only can the CLA usually execute the
control task more quickly, but it also frees the F28 CPU to perform
other tasks.

Complex control tasks can be split into smaller tasks that can be
run simultaneously on the two F28 CPUs and two CLA co-pro-
Cessors.

References

[11 ‘SwitcherGear Micro MC28377D’, Denkinetic Pty Ltd,
Reference Manual DD00045.

15/17

Denkinetic Ptv Ltd

https://dev.ti.com/

Example BasicDriveVF

APPLICATION NOTE

2

(3l

4

(5]

6l

(7]

8l

[

‘SwitcherGear Module B12CC1’, Denkinetic Pty Ltd,
Reference Manual DD00022.

‘SwitcherGear Module CON002’, Denkinetic Pty Ltd,
Reference Manual DD00024.

‘SwitcherGear Accessory SNI005’, Denkinetic Pty Ltd,
Reference Manual DD00058.

‘SwitcherGear Module AINO04’, Denkinetic Pty Ltd, Reference

Manual DD00042.

‘SwitcherGear Accessory SNV005’, Denkinetic Pty Ltd,
Reference Manual DD00054.

‘SwitcherGear Module AOV001’, Denkinetic Pty Ltd,
Reference Manual DD00056.

‘SwitcherGear Module AOU001’, Denkinetic Pty Ltd,
Reference Manual DD00026.

‘Install SwitcherWare Library’, Denkinetic Pty Ltd, Application
Note DD00051.

Denkinetic Ptv Ltd

16/17

APPLICATION NOTE

Example BasicDriveVF

Revision History

Revision Date Changes From Previous Release

1 14 Sep 2016 |® Original release.

2 08 Aug 2018 |® Updated for SwitcherWare Library version 0.6.3 and new SwitcherGear hardware.
3 29 Mar 2019 |® Updated state machine for SwitcherWare Library version 0.7.0.

Updated hardware configuration.

17/17

Denkinetic Ptv Ltd

	
	Example BasicDriveVF
	Revision History

	Introduction
	Support Material
	Hardware
	Microcontroller (MCU) Variants

	Warning
	Project Description
	Hardware
	Power System
	SwitcherGear Controller

	SwitcherGear Configuration Document
	SwitcherWare Library Objects
	Sensor Inputs
	Converter Interface
	Constant V/F Controller
	Ramp Generator
	Analogue Outputs

	Project Objects
	State Machine
	Basic Drive

	Task Scheduling
	Data Capture

	Code Generation Tools
	Code Composer Studio
	Download CCS Installer
	Install CCS
	Licensing

	C2000Ware
	Install LibreOffice
	Debug Probe

	Hardware Configuration
	Power System
	SwitcherGear Controller
	Microcontroller
	Converter Interface
	Current Measurement
	Voltage Measurement

	Analogue Output

	Install The SwitcherWare Library
	CCS Workspace
	Set Build Variables
	Import BasicDriveVF Example Project
	Project Properties

	Configuration Document
	Delete Existing Project Configuration Files
	Copy the Configuration Document
	Open the Configuration Document
	Modify the Configuration Document
	Current sensor module
	Voltage sensor module
	Converter module EPWM
	Converter module Trip signal
	Analogue output module

	Generate Documents

	Code Execution
	Expressions

	Verify Controller Inputs And Outputs
	Voltage Sensor
	Current Sensors
	Gate Drive Outputs

	Drive Operation
	Data Visualisation
	Data Capture
	Optimisation
	Extensions To The BasicDriveVF Project
	GUI Composer Interface
	Add Inrush Current Limiting
	Control The Drive With Digital I/O
	Control The Drive Over Serial Communications
	Port The Control Algorithm To The CLA Co-Processor

	References

